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Universality classes in isotropic, Abelian, and non-Abelian sandpile models

Erel Milshtein,* Ofer Biham,† and Sorin Solomon‡
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Universality in isotropic, Abelian, and non-Abelian, sandpile models is examined using extensive numerical
simulations. To characterize the critical behavior we employ an extended set of critical exponents, geometric
features of the avalanches, as well as scaling functions describing the time evolution of average quantities such
as the area and size during the avalanche. Comparing between the Abelian Bak-Tang-Wiesenfeld model@P.
Bak, C. Tang, and K. Wiensenfeld, Phys. Rev. Lett.59, 381~1987!# and the non-Abelian models introduced by
Manna@S. S. Manna, J. Phys. A24, L363 ~1991!# and Zhang@Y. C. Zhang, Phys. Rev. Lett.63, 470 ~1989!#
we find strong indications that each one of these models belongs to a distinct universality class.
@S1063-651X~98!09007-2#

PACS number~s!: 05.70.Jk, 05.40.1j, 05.70.Ln
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I. INTRODUCTION

Sandpile models have been studied extensively during
past decade as a paradigm of self-organized critica
~SOC!. This concept, introduced by Bak, Tang, and Wies
feld ~BTW! @1,2#, stimulated numerous theoretical@3–14#,
numerical @15–22# and experimental studies@23–28#. In
sandpile models, which are defined on a lattice, grains
deposited randomly until the height at some site exceed
threshold, and becomes unstable. Grains are then distrib
to the nearest neighbors. As a result of this relaxation p
cess, neighboring sites may become unstable, resulting
cascade of relaxations calledan avalanche. It was observed
that these models are self-driven into a critical state tha
characterized by a set of exponents@1,2#. This set includes
the distribution exponentsthat describe the distribution o
quantities such as avalanche size, area, and lifetime, an
geometric exponentsthat relate various properties of the d
namics@21,22#. Additional sandpile models that differ from
the BTW model in the dynamic rules were introduced a
studied. These include the Manna model@29#, in which the
dynamics during an avalanche is stochastic, and the Zh
model @15#, in which the dynamic variable is continuous.
order to understand the basic mechanism of SOC, nume
attempts were made to assign the various models to un
sality classes. To this end, Vespignani, Zapperi, and Piet
ero introduced the fixed scale transformation, which is a re
space renormalization-group~RG! approach@30,31#. They
applied this approach to the BTW and Manna models
concluded that these two models belong to the same un
sality class. Later, a comparison between the critical beh
ior of BTW and the Manna models was performed, us
extensive numerical simulations and an extended set of
ponents@32#. The results provide strong evidence that t
two models belong to different universality classes. R
cently, Diaz-Guilera and Corral applied the dynamic R
technique to study critical behavior in sandpile models. Th
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conclusion was that the BTW and the Zhang models bel
to the same universality class@33–35#. A similar conclusion
was reached by Lu¨beck @36#, based on numerical simula
tions.

In this paper we apply an extended set of tools for
characterization of critical behavior in sandpile models a
for their classification into universality classes. These to
include measures that characterize avalanches as a w
such as the distribution exponents, the geometric expone
and the avalanche structure. We also introduce a meas
based on scaling functions, describing the time evolution
the area, size, and energy during an avalanche. Combi
all these tools, we find strong indications that the BTW
Manna, and Zhang models belong to three different univ
sality classes.

The paper is organized as follows. The models are in
duced in Sec. II and the measures for their classification
presented in Sec. III. The simulations and results are give
Sec. IV, followed by a summary and conclusions in Sec.

II. THE MODELS

Sandpile models are defined on ad-dimensional lattice of
linear sizeL. Each sitei is assigned a dynamic variableE( i…,
which represents some physical quantity such as ene
stress, etc. In a critical height model a configuration$E( i)% is
calledstableif for all sites E( i),Ec , whereEc is a thresh-
old value. The evolution between stable configurations is
the following rules.

~i! Adding energy. Given a stable configuration$E( j …‰ we
select a sitei at random and increaseE( i) by some amount
dE. When an unstable configuration is reached rule~ii ! is
applied.

~ii ! Relaxation rule. If E( i)>Ec , relaxation takes place
and energy is distributed in the following way:

E~ i!→E~ i!2(
e

DE~e!, E~ i1e!→E~ i1e!1DE~e!,

~1!

wheree are a set of~unit! vectors from the sitei to some
neighbors. As a result of the relaxation, the dynamic varia
303 © 1998 The American Physical Society
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in one or more of the neighbors may exceed the thresh
The relaxation rule is then applied until a stable configu
tion is reached. The sequence of relaxations is an avala
that propagates through the lattice.

It was shown before that the parametersdE and Ec are
irrelevant to the scaling behavior@7,33,34#. This indicates
that the critical exponents depend only on the vectorDE, to
be termedrelaxation vector. For a square lattice with relax
ation to nearest neighbors~NN!, it is of the form DE
5(EN ,EE ,ES ,EW), where EN , EE , ES , and EW are the
amounts transferred to the northern, eastern, southern,
western NN’s, respectively. In the BTW model,Ec
54, dE51, and DE5(1,1,1,1). If an active site with
E( i).Ec is toppled, it would not become empty after th
topple had occurred. In the Zhang model@15#, for which
Ec51 and 0,dE,1, the relaxation vector is given b
(b,b,b,b), whereb5E( i)/4 andE( i) is the amount of en-
ergy in the active site before the topple had occurred. Ob
ously, the sitei remains empty after toppling.

In a random relaxation model@29# a set of neighbors is
randomly chosen for relaxation. Such a model is specified
a set of relaxation vectors, each vector being assigne
probability for it application. For example, a possible re
ization of a two-state model includes six relaxation vect
~1,1,0,0!, ~1,0,1,0!, ~1,0,0,1!, ~0,1,1,0!, ~0,1,0,1!, and
~0,0,1,1!, each one applied with a probability of 1/6. A fou
state model would include relaxation vectors such
~4,0,0,0!, ~3,1,0,0!, ~2,2,0,0!, ~2,1,1,0!, ~1,1,1,1!, ~0,2,1,1!,
etc., applied at different probabilities while maintaining t
fourfold symmetry of the relaxation rule. Atime step~of unit
time! is defined as the relaxation of all the sites havi
E( i)>Ec , after the completion of the previous time step.
model is said to beAbelian if the configuration after the
avalanche does not depend on the order in which the re
ation of the active sites was performed. The BTW model w
shown to be Abelian@7#. The Manna models@18,20# are not
Abelian because they contain a random choice of the
pling direction. As a result, they develop different scenes
toppling that depend on the order of relaxation of the act
sites in a single time step. The Zhang model is also n
Abelian. This can be seen from the following example, wh
two active NN sites are toppled within the same time st
The site that was toppled last remains empty while the o
one is nonempty. This shows that the final configuration
pends on the order.

III. MEASURES FOR CLASSIFICATION

Avalanches have various properties that can be meas
in a simulation: size, area, lifetime, linear size, and per
eter. The size (s) of an avalanche is the total number
relaxation events that occurred in the course of a single a
lanche. The area (a) is the number of sites in the lattic
where relaxation occurred. The lifetime (t) of an avalanche
is the number of time steps~defined above! that took place
during the avalanche. As for the linear size of an avalanc
one can use the radius of gyration (r ) of the cluster of sites
where relaxation occurred. A site inside the areaa is defined
as a perimeter site if it has a nearest neighbor where
relaxation took place. The perimeter (p) is the number of
perimeter sites. Thus we have a set of variables$s,a,t,r ,p%
d.
-
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that characterize an avalanche. The avalanche variables
probability functions that are assumed to fall off with
power law defined byP(x);x12tx, where xP$s,a,t,r ,p%
and the exponentstx are calleddistribution exponents. These
variables also scale against each other in the form

y;xgyx, ~2!

for x,yP$s,a,t,r ,p% and the exponentsgyx are calledgeo-
metric exponents. The exact definition of the geometric crit
cal exponentsgxy is in terms of conditional expectation va
ues:E@yux#;xgyx @21#. The exponents are not independe
It is shown in@22# that they satisfy the scaling relations

gyx5gxy
21 ~3!

and

gzx5gzygyx . ~4!

Apart from the critical exponents, we have also examined
structural features of the avalanches. We define on the la
a function that specifies the number of toppling events,f ( i…,
for each site i during a single avalanche. In a two
dimensional~2D! model this function takes the form of
hilly terrain, with discrete heights. Thenth terrace is then
defined as the set of sites for whichf ( i)>n. This height
profile of an avalanche can be described by drawing the a
of thenth terrace,An vs n. Furthermore, we can considerAn
as an avalanche variable, just like the size or the area, an
distribution is characterized by the exponentta(n). This
gives us new variables that can be measured and comp
between the various models.

The avalanche properties introduced so far, such as
area and size, characterize an avalanche as a whole, an
measured only after the avalanche is completed. Here
introduce measures to characterize the time evolution du
an avalanche. Measured vs time, for a single avalanche, t
measures exhibit an irregular form. However, if we avera
them over a large number of avalanches, a typical sh
emerges. We now introduce three such measures.

~i! The avalanche areaac(t), namely the number of site
where at least one relaxation occurred during the firstt time
steps of the avalanche. As the avalanche is completed,ac(t)
evolves to the areaa of the avalanche. We also definea(t)
as the time derivative ofac(t), according to a(t)
5dac(t)/dt, wheredac(t)/dt[ac(t11)2ac(t). The vari-
able a(t) gives the number of sites that at timet became
active for the first time~and are to be toppled in the next tim
step!. As the avalanche evolves to an end we find that
avalanche area satisfiesa5( t50

tmaxa(t), wheretmax is the ava-
lanche time, and thet50 step consists of the depositio
event that initiated the avalanche.

~ii ! The number of active sitess(t) ~namely sites that are
to topple in the next time step! as a function of time. As the
avalanche evolves to an end we find thats5( t50

tmaxs(t) is the
avalanche size.

~iii ! Considering a sandpile in a gravitational field, w
define the potential energyu(t)5( iui(t), whereui(t) is the
energy at sitei given by
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ui~ t !5E
0

E~ i!
mgh~ t !dh. ~5!

The values ofm and g are irrelevant and we takemg51.
The potential energy defined here turns out to be prop
tional to E( i…2, contrary to the ordinary definition of energ
in sandpiles, which is linear inE( i). For the case of a dis
crete dynamic variable, a sitei having energyE( i) will have
a potential energyui(t)5E( i)@E( i)11#/2.

Averaging the functionsa(t), s(t), and u(t) over a
large number of avalanches we obtain the functio
A(t), S(t), and U(t), respectively. According to the dy
namic scaling assumption, each one of these functions ca
written in the general scaling form :

X~ t !5KX^t&X
2aXf XS t

^t&X
D , ~6!

where

^t&X5

(
t

tX~ t !

(
t

X~ t !

~7!

and XP$U,S,A%. The scaling functionf X(m), where m
5t/^t&X , satisfies the sum rules

E
0

`

f X~m!dm5E
0

`

m f X~m!dm51. ~8!

The shape of the scaling function and the values of the
ponentsaX can be used to distinguish between universa
classes. Moreover, the relation between these scaling f
tions can be used as a further tool. For example, iff X(m) and
f Y(m) coincide for one model and are different in anoth
model, it indicates that these two models do not belong to
same universality class. The dependence of^t&X on the sys-
tem sizeL is given by

^t&X;LbX. ~9!

IV. SIMULATIONS AND RESULTS

Having defined the three models and the measures
for their characterization, we now describe the compu
simulations. We have used open boundary conditions
system sizes up to 5122, with 106 to 108 grains dropped, in
two dimensions~2D!. For each run we ascertained, befo
collecting data, that the dynamics has reached the crit
state by applying Dhar’s burning algorithm@7#, or by starting
with a configuration belonging to the critical state. For ea
model we have calculated all the measures of classifica
mentioned in Sec. III.

The exponentts that describes the avalanche size dis
bution was measured for the BTW, Manna four-state, a
Zhang models~Fig. 1! finding good agreement with previou
results@32,36#. The exponentts for the three models, as
r-
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function of the inverse system size, is given in Fig. 2. The
results do not provide a reliable extrapolation ofts to the
infinite system limit. However, they strongly indicate that t
curves converge to different values ofts as L→`. As ts
exhibits relatively strong dependence on the system
@32#, it cannot be used as the primary tool for classificati
of models, but only to provide additional evidence.

The geometric exponentsgxy are only weakly dependen
on the system size, and turn out to be very useful for cla
fication of sandpile models@32#. In our simulations we ex-
amined the exponentsgsa , gst , andgat . This was done by
drawing on a log-log scale quantities such as the aver
avalanche sizeE@sua# for a given areaa, wheregsa is given
by the slope of the straight line section~Fig. 3!. The values
of the geometric exponents for the BTW and the Man
four-state models are in agreement with previous simulati
@32#. Our simulations of the Zhang model, for system size

FIG. 1. Avalanche size distributions in the BTW, Manna fou
state, and Zhang models. The exponents arets52.09060.005 for
BTW, ts52.2360.01 for Manna, andts52.2560.01 for the
Zhang model. System size is 1282.

FIG. 2. The exponentts of the avalanche size distribution as
function of the inverse system size (1/L) in the BTW, Manna four-
state, and Zhang models. The lines are guides to the eye. Altho
it is hard to reliably extrapolate from these results to 1/L→0, this
graph strongly indicates that the curves converge to three diffe
values.
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to 10242, showed that these variables,gsa , gst , andgat , are
not scale invariant~Fig. 3!. Although for small avalanche
the scaling behavior for the Zhang model resembles the
tribution of the same variables in the BTW model, for lar
avalanches we find abend and a sudden change in slop
This bend is insensitive to the system size for all the sys
sizes that were checked~Fig. 4!. For large avalanches, th

FIG. 3. Geometric critical exponents for the BTW, Manna fou
state, and Zhang models.~a! E@sua# ~average avalanche size fo
given avalanche area! vs a is presented, yieldinggsa . ~b! E@sut# is
given vst ~avalanche time!, yielding gst . ~c! E@aut# is given vst,
yielding gat . System size is 5122 with 107 grains dropped. Data
were binned with uniform bin sizes on the logarithmic scale.
s-

m

geometric exponents are clearly different from the valu
recorded for the BTW model and for the Manna four-sta
model. This puts in question the previous assignment of
Zhang model to the universality class of the BTW mod
@33–36#.

To further characterize the avalanche structure, we ex
ined the functionf ( i), which provides the number of top
pling events at sitei during the avalanche~Fig. 5!. For the
BTW model, we observe a shell structure in which all sit
that relaxed at leastn11 times form a connected cluste
with no holes, which is contained in the cluster of sites th
relaxed at leastn times @7,37#. The Manna four-state mode
exhibits a random avalanche structure with many peaks
holes @32#. In between we find the Zhang model, whic
shows an avalanche structure that is mostly shelled, bu
different from the BTW picture by having several peaks a
holes, but not as many as in the Manna four-state mode

To obtain a more quantitative characterization of the t
race structure we chose typical large avalanches for eac
the three models and plotted the terrace numbern as a func-
tion of its area~Fig. 6!. For the Manna model this function
exhibits higher and sharper peak compared to the two o
models. We have also measured, for the three models,
distribution exponentsta(n) for terraces no. 2, 3, 4, and
~Table I!. The results show quantitative differences in t
avalanche structures, between the three models. In all c
ta(n) decreases asn is increased. The differences are si
nificant with the lowestta(n) for Zhang, intermediate for
BTW, and highest for Manna models.

To obtain a more complete characterization of critical b
havior in sandpile models we also examine the time evo
tion of the energy, avalanche size, and area during the
lanche, averaged over a large number of avalanc
Combining results for system sizesL5128, 256, and 512 we
draw the scaling functionsf U(m), f S(m), and f A(m) that
describe the averaged time evolution of the energy, num
of active sites, and area growth rate during the avalanc

FIG. 4. The conditional expectation valueE@sua# vs a, which
yieldsgsa for the Zhang model for four system sizes between 122

and 10242. A bend is observed below whichgsa is similar to the
corresponding exponent for the BTW model. Above this bendgsa

51.6060.05. This value is clearly different from thegsa51.05
60.01 of the BTW model and thegsa51.24060.005 for the
Manna four-state model.
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FIG. 5. Typical large avalanche structure for the BTW model~a!, Manna four-state model~b!, and the Zhang model~c!. Gray scales
indicate the number of toppling eventsf ( i) that occurred at each site during the avalanche. White represents zero relaxations, an
represents the maximal number of relaxations@13 in ~a!, 16 in ~b!, and 17 in~c!#. System size is 1282. Note the shell structure in the BTW
avalanche@4# vs the irregular structure of the avalanche in the Manna four-state model, and the intermediate structure of the
avalanche. These qualitative geometrical differences translate into quantitative differences in exponent values.
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The scaling functions for the BTW, Manna, and Zhang mo
els are shown in Figs. 7, 8 and 9, respectively. For the B
and Manna models we find excellent data collapse indica
scaling behavior. No such scaling is found for the Zha
model, indicating that it lacks some of the features of a cr
cal system, which are found in the BTW and Manna mod
For the BTW model~Fig. 7! we observe that all three scalin
functions f U(m), f S(m), and f A(m) are identical, so the
system is basically described by a single scaling functi
For the Manna model, we find thatf U(m) and f S(m) coin-
cide, while f A(m) is different. For the Zhang model, we fin
that there is no data collapse and therefore no scaling fu
tion. Interestingly, for each system size the functionsf U(m)
and f S(m) are identical, whilef A(m) is different. The aver-
-

g
g
-
.

.

c-

age times are found to depend on the system size accor
to ^t&X;LbX, where XP$U,S,A%. For the BTW model,
bU51.51, bS51.43, andbA51.31; for the Manna model
bU51.52, bS51.53, andbA51.48; for the Zhang mode
one can approximate these exponents by val
bU51.5, bS51.46, andbA51.36 but there is a significan
deviation from a straight line in the log-log plots of^t&X vs
L.

V. SUMMARY AND CONCLUSIONS

We have studied universality in isotropic, Abelian, a
non-Abelian sandpile models using a combination of ext
sive numerical simulations and an extended set of meas
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to characterize these models. In particular, we focused on
BTW model~which is Abelian, deterministic, and isotropic!,
the Manna model~non-Abelian, stochastic, and isotropic o
average!, and the Zhang model~non-Abelian, deterministic
and isotropic!. For each model we have calculated the critic
exponents that characterize an avalanche as a whole. T
include the distribution exponentstx , which characterize the
distribution of quantities such as avalanche size, area,
lifetime, and the geometric exponentsgxy , which relate the
scaling properties of different quantities. The geometric
ponentsgxy are particularly useful for classification due
their weak dependence on the system size. Comparing t
exponents we find clear indications that the BTW and Man
models belong to different universality classes, in agreem
with previous simulations@32#. As for the Zhang model, the
geometric critical exponents are not well defined. For
system sizes examined, the functionsE@yux# vs x, where
x,yP$s,a,t%, from which the exponentsgxy are obtained,
exhibit domains with different slopes for small and lar
avalanches. The small avalanche behavior is similar to
BTW results, while the large avalanche behavior is differ
from both the BTW and Manna models.

FIG. 6. The activity profile of a typical large avalanche in t
BTW, Manna four-state and Zhang model. The terrace numbe
plotted as a function of its area. The picture is reflected around
y axis. The system size is 1282. The BTW and Zhang models ex
hibit moderate slopes, while in the Manna four-state model
slope becomes extremely steep at high terrace numbers.

TABLE I. The distribution exponentta(n) for the areas of the
terraces no.n52,3,4,5, in a 2D sandpile of size 1282. For all three
models,ta(n) tends to decrease as the terrace ordern increases.
The differences between the models are significant, with the low
exponents for Zhang, intermediate for BTW, and highest for
Manna model.

Exponent model

BTW Manna four-state Zhang

ta(2) 2.056 0.03 2.166 0.03 1.986 0.03
ta(3) 2.006 0.04 2.116 0.04 1.856 0.04
ta(4) 1.956 0.05 2.096 0.05 1.776 0.05
ta(5) 1.916 0.05 2.006 0.05 1.746 0.05
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The avalanche structures of the three models are foun
be significantly different. The BTW avalanche structure
the most regular, the Manna structure is the most irregu
and the Zhang avalanche structure is intermediate.

We have also examined measures of the dynamics du
the avalanche. We found scaling functions for the time e
lutions of the energyf U(m), number of active sitesf S(m),
and the rate of area growthf A(m) in the BTW and Manna
models. For the BTW model, all three scaling functions c
incide, while for the Manna model only the first two coin
cide. This is a qualitative difference that further strengthe
our conclusion that the two models belong to different u
versality classes. For the Zhang model these functions do
exhibit scaling behavior. This is a further indication that t
Zhang model lacks some essential features of critical beh
ior, which appear in the BTW and Manna models, and th

is
e

e

st
e

FIG. 7. The scaling functions for the BTW model forL5128,
256, and 512:~a! f U(m), which describes the time dependence
the energy during the avalanche;~b! f S(m), which describes the
time dependence of the number of active sites; and~c! f A(m) which
describes the time dependence of the avalanche area growth
We observe that all three scaling functions coincide, indicatin
common scaling function forU, S, andA. The exponents are found
to be aU50.24, aS50.39, andaA50.26 and the prefactorsKU

52.34,KS50.3, andKA50.55.
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belongs to a different universality class. In fact, the on
unambiguous scaling features of the Zhang model are g
by the distribution exponentstx . We thus conclude that th
BTW, Manna, and Zhang models belong to three univer
ity classes.

Our results disagree with the conclusions of a numbe
recent studies. Lu¨beck studied the scaling behavior in th
BTW and Zhang models using extensive numerical simu
tions @36#. Relying only on the distribution exponents, h
concluded that the BTW and Zhang models belong to
same universality class. As we demonstrated above, the
tribution exponents provide very limited characterization
the scaling behavior. Therefore, these exponents alone
not enough to support a conclusion that two models bel
to the same universality class. Moreover, the distribution
ponents are strongly dependent on the system size.
should be careful in interpreting the results of the finite s
analysis done in@36#, based on an assumed size depende

FIG. 8. The scaling functions for the Manna four-state model
L5128, 256, and 512:~a! f U(m), ~b! f S(m), and ~c! f A(m). We
observe that the scaling functionsf U(m) and f S(m) coincide while
f A(m) has a completely different form. The exponents are found
be aU50.24, aS50.3, and aA520.11 and the prefactorsKU

51.76,KS50.221, andKA50.93.
en
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that is not substantiated theoretically. Recently Corral a
Diaz-Guilera derived nonlinear partial differential equatio
based on the microscopic evolution rules of the BTW a
Zhang models@35#. Using a dynamic RG approach they an
lyzed these equations and concluded that the two mo
belong to the same universality class. Vespignani, Zapp
and Pietronero used a real space RG approach and conc
that the BTW and Manna models belong to the same univ
sality class@30,31#. The failure of these approaches to di
tinguish between the universality classes indicates that s
key ingredients of the dynamics are not taken into accou

The results presented here provide a further indication
the rich and diverse behavior of sandpile models. On the
hand, the fact that so many different models exhibit scal
behavior shows that the self-organized critical state is

r

o

FIG. 9. The functions~a! f U(m), ~b! f S(m), and ~c! f A(m) for
the Zhang model forL5128, 256, and 512. We observe that fun
tions obtained from different system sizes do not coincide, indic
ing that these are not scaling functions. This indicates that
Zhang model lacks some of the characteristic features of a cri
state found in the BTW and Manna models. Interestingly, for e
system sizef U(m) and f S(m) still coincide, while f A(m) is differ-
ent. The exponents are found to beaU50.3, aS50.32, andaA5
20.2 and the prefactorsKU50.55,KS50.76, andKA53.55.
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neric for a broad class of slowly driven systems. On the ot
hand, the critical exponents and scaling functions are fo
to be dependent on details of the model dynamics. We sp
late that these details may be related to symmetries suc
the Abelian symmetry, as well as properties such as the
terministic vs stochastic nature of the avalanche dynam
Revealing the relation between the scaling properties and
underlying symmetries would open the way to a system
classification of these systems, and to the complete RG-
dl

dl
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theory of SOC. Furthermore, applying the measures in
duced here in the analysis of experimental results m
sharpen the experimental evidance for SOC in empirical s
tems.
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