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Universality classes in isotropic, Abelian, and non-Abelian sandpile models
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Universality in isotropic, Abelian, and non-Abelian, sandpile models is examined using extensive numerical
simulations. To characterize the critical behavior we employ an extended set of critical exponents, geometric
features of the avalanches, as well as scaling functions describing the time evolution of average quantities such
as the area and size during the avalanche. Comparing between the Abelian Bak-Tang-Wiesenfe[tP model
Bak, C. Tang, and K. Wiensenfeld, Phys. Rev. L&%.381(1987] and the non-Abelian models introduced by
Manna[S. S. Manna, J. Phys. 24, L363(1991)] and ZhandY. C. Zhang, Phys. Rev. Let63, 470(1989]
we find strong indications that each one of these models belongs to a distinct universality class.
[S1063-651%98)09007-3

PACS numbg(s): 05.70.Jk, 05.40kj, 05.70.Ln

[. INTRODUCTION conclusion was that the BTW and the Zhang models belong
to the same universality clag33—35. A similar conclusion
Sandpile models have been studied extensively during theas reached by Theck [36], based on numerical simula-
past decade as a paradigm of self-organized criticalityions.
(SOQ. This concept, introduced by Bak, Tang, and Wiesen- In this paper we apply an extended set of tools for the

feld (BTW) [1,2], stimulated numerous theoretic—14), characterization of critical behavior in sandpile models and
numerical [15—-29 and experimental studief23—2§. In for their classification into universality classes. These tools

sandpile models, which are defined on a lattice, grains ar#iclude measures that characterize avalanches as a whole

deposited randomly until the height at some site exceeds 8Uch as the distribution exponents, the geometric exponents,
threshold, and becomes unstable. Grains are then distribut@id the avalanche structure. We also introduce a measure,
to the nearest neighbors. As a result of this relaxation probased on scaling functions, describing the time evolution of
cess, neighboring sites may become unstable, resulting intge area, size, and energy during an avalanche. Combining
cascade of relaxations callesh avalanchelt was observed all these tools, we find strong indications that the BTW,
that these models are self-driven into a critical state that i¢anna, and Zhang models belong to three different univer-
characterized by a set of exponefis2]. This set includes sality classes.

the distribution exponentshat describe the distribution of ~ The paper is organized as follows. The models are intro-
quantities such as avalanche Size, area, and |ifetime, and tﬁ’élced in Sec. Il and the measures for their classification are
geometric exponenmat relate various properties of the dy- presented in Sec. lll. The simulations and results are given in
namics[21,22. Additional sandpile models that differ from Sec. IV, followed by a summary and conclusions in Sec. V.
the BTW model in the dynamic rules were introduced and

studied. These include the Manna mo{29], in which the Il. THE MODELS

dynamics during an avalanche is stochastic, and the Zhang . i ) ) .
model[15], in which the dynamic variable is continuous. In  Sandpile models are defined oralimensional lattice of
order to understand the basic mechanism of SOC, numeroti§ear sizeL. Each sitd is assigned a dynamic varialii),
attempts were made to assign the various models to univeWhich represents some physical quantity such as energy,
sality classes. To this end, Vespignani, Zapperi, and Pietrorfitress, etc. In a critical height model a configurafigiti) } is

ero introduced the fixed scale transformation, which is a realcalledstableif for all sites E(i)<E, whereE_ is a thresh-
space renormalization-groufRG) approach[30,31. They old value. The evolution between stable configurations is by
applied this approach to the BTW and Manna models andhe following rules.

concluded that these two models belong to the same univer- (i) Adding energyGiven a stable configuratiofE(j)} we
sality class. Later, a comparison between the critical behas€lect a site at random and increadg(i) by some amount

ior of BTW and the Manna models was performed, usingdE. When an unstable configuration is reached ilg is
extensive numerical simulations and an extended set of exapplied.

ponents[32]. The results provide strong evidence that the (ii) Relaxation rule If E(i)=E., relaxation takes place
two models belong to different universality classes. Re-and energy is distributed in the following way:

cently, Diaz-Guilera and Corral applied the dynamic RG

technique to study critical behavior in sandpile models. Their E(i)—>E(i)—2 AE(e), E(i+e)—E(i+e+AE(e),
e

1)
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in one or more of the neighbors may exceed the thresholdhat characterize an avalanche. The avalanche variables have
The relaxation rule is then applied until a stable configuraprobability functions that are assumed to fall off with a
tion is reached. The sequence of relaxations is an avalanciwer law defined byP(x)~x'"", wherexe {s,a,t,r,p}
that propagates through the lattice. and the exponents, are calledistribution exponentsThese

It was shown before that the parametéis andE; are  variables also scale against each other in the form
irrelevant to the scaling behavi¢#,33,34. This indicates
that the critical exponents depend only on the vedtB, to y =X, 2
be termedrelaxation vector For a square lattice with relax-
ation to nearest neighborNN), it is of the form AE for x,y e{s,a,t,r,p} and the exponenty,, are calledgeo-
=(En,Eg.Es,Ew), whereEy, Eg, Es, andEy, are the metric exponentsThe exact definition of the geometric criti-
amounts transferred to the northern, eastern, southern, ard| exponentsy,, is in terms of conditional expectation val-
western NN's, respectively. In the BTW modeE.  ues:E[y|x]~x"x[21]. The exponents are not independent.
=4, oJE=1, and AE=(1,1,1,1). If an active site with |t is shown in[22] that they satisfy the scaling relations
E(i)>E. is toppled, it would not become empty after the
topple had occurred. In the Zhang modéb], for which Yyx= y;yl (©)]
E.=1 and O0<SE<1, the relaxation vector is given by
(b,b,b,b), whereb=E(i)/4 andE(i) is the amount of en- 54
ergy in the active site before the topple had occurred. Obvi-
ously, the sitd remains empty after toppling. Y2x= Y2y Vyx- 4

In a random relaxation modé¢29] a set of neighbors is
randomly chosen for relaxation. Such a model is specified b
a set of relaxation vectors, each vector being assigned
probability for it application. For example, a possible real-
ization of a two-state model includes six relaxation vector:

BApart from the critical exponents, we have also examined the
&ructural features of the avalanches. We define on the lattice
Sfa function that specifies the number of toppling evefits,
or each sitei during a single avalanche. In a two-
(1,1,0,0, (1,0,1,0, (1’9’0’])’. (0,1,1,0, .(.0’1’0’])’ and dimensional(2D) model this function takes the form of a
(0,0,1,2, each one applied with a probability of 1/6. A four | . . : . . .
) ; hilly terrain, with discrete heights. Theth terrace is then
state model would include relaxation vectors such as, . ) o : .
defined as the set of sites for whidlfi)=n. This height
(41010101 (31110101 (21210701 (21111101 (1111111)! (01211131 H H H
. ; o . S profile of an avalanche can be described by drawing the area
etc., applied at different probabilities while maintaining the

fourfold symmetry of the relaxation rue. #me stepof unit 2 2L AR b 8 L F e e e nd s
time) is defined as the relaxation of all the sites having ') '

E(i)=E., after the completion of the previous time step. Ad!strlbuuon IS characterlzed by the exponeny(n). This
model is said to beAbelian if the configuration after the gives us new variables that can be measured and compared

avalanche does not depend on the order in which the relaxb-etween the various m°d‘?'5- .
The avalanche properties introduced so far, such as the

ation of the active sites was performed. The BTW model was

chour 1 be Abeliar) The anna mode9 20 are ot 122 1 5126, characlerze n suaanche se  whole,and e
Abelian because they contain a random choice of the top- Y P i

pling direction. As a result, they develop different scenes ofntroduce measures to characterize the time evolution during

. . . an avalanche. Measured vs time, for a single avalanche, these
toppling that depend on the order of relaxation of the actlvemeasures exhibit an irreaular form. However. if we average
sites in a single time step. The Zhang model is also nonfhem over a large numger of avalllanches ;i tvpical sha? e
Abelian. This can be seen from the following example, when g€ ' yp P

emerges. We now introduce three such measures.

two active NN sites are toppled within the same time step. (i) The avalanche arem(t), namely the number of sites
The site that was toppled last remains empty while the other &L, y : o
where at least one relaxation occurred during the fitshe

one is nonempty. This shows that the final configuration de-SteIOS of the avalanche. As the avalanche is compleigt)
pends on the order. i
evolves to the area of the avalanche. We also defiagt)
as the time derivative ofa.(t), according to a(t)
lll. MEASURES FOR CLASSIFICATION =dag(t)/dt, whereda.(t)/dt=a.(t+1)—ac(t). The vari-
Avalanches have various properties that can be measure‘;lotl)lfe a(t) gives th? number of sites that at tmuebecam_e
in a simulation: size. area. lifetime. linear size. and perim_act|ve for the first time&and are to be toppled mthg next time
o ' ' ' ' step. As the avalanche evolves to an end we find that the
eter. The size §) of an avalanche is the total number of e ta )
relaxation events that occurred in the course of a single avvalanche area satisfias-=,"a(t), wheretyayis the ava-
lanche. The areaa) is the number of sites in the lattice '@nche time, and thé=0 step consists of the deposition
where relaxation occurred. The lifetimé) (of an avalanche €vent that initiated the avalanche. _
is the number of time stepslefined abovethat took place (i) The number of active sites(t) (namely sites that are
during the avalanche. As for the linear size of an avalanchd® topple in the next time st¢@s a function ?f time. As the
one can use the radius of gyration) (of the cluster of sites avalanche evolves to an end we find that> "3s(t) is the
where relaxation occurred. A site inside the amda defined avalanche size.
as a perimeter site if it has a nearest neighbor where no (iii) Considering a sandpile in a gravitational field, we
relaxation took place. The perimetep)(is the number of define the potential energy(t) ==,u;(t), whereu(t) is the

perimeter sites. Thus we have a set of variabkesa,t,r,p} energy at sité given by
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.1

t j * mghhdh (5) 10 ' ' ' '
u(t)= m .
|( ) 0 gr( ) % 3§ - BTW
102 ‘3@2% = Manna four state |
The values ofm and g are irrelevant and we takeig=1. %g% + Zhang
The potential energy defined here turns out to be propor- 3

tional to E(i)?, contrary to the ordinary definition of energy
in sandpiles, which is linear i(i). For the case of a dis-
crete dynamic variable, a sithaving energye(i) will have 10" |
a potential energy;(t)=E(i)[E(i) +1]/2.

Averaging the functionsa(t), s(t), and u(t) over a B
large number of avalanches we obtain the functions 10" f
A(t), S(t), andU(t), respectively. According to the dy-
namic scaling assumption, each one of these functions can b 10°
written in the general scaling form : 10’ 10' 10 10’ 10° 10°

avalanche size s

P(s)

i 1 1 h

t
X(t)= Kx<t>xaxfx(w>’ (6) FIG. 1. Avalanche size distributions in the BTW, Manna four-
X state, and Zhang models. The exponentszgre2.090+ 0.005 for
BTW, 7,=2.23+0.01 for Manna, andr;=2.25+0.01 for the
where Zhang model. System size is £28

> tX(t) function of the inverse system size, is given in Fig. 2. These
t results do not provide a reliable extrapolation fto the
Ox=—"" () infinite system limit. However, they strongly indicate that the
> X(b) curves converge to different values of asL—o. As 7
! exhibits relatively strong dependence on the system size
[32], it cannot be used as the primary tool for classification
and Xe{U,S,A}. The scaling functionfy(u«), where u of models, but only to provide additional evidence.

=t/(t)y, satisfies the sum rules The geometric exponentg,, are only weakly dependent
on the system size, and turn out to be very useful for classi-
” e _ fication of sandpile modelg32]. In our simulations we ex-
f du= f f du=1. 8 . :
fo x(w)du 0 I ) du ® amined the exponentgs,, yst, andy,;. This was done by

drawing on a log-log scale quantities such as the average
avalanche siz&[ s|a] for a given area, wherey,, is given

y the slope of the straight line sectidRig. 3). The values

f the geometric exponents for the BTW and the Manna
our-state models are in agreement with previous simulations
[32]. Our simulations of the Zhang model, for system size up

The shape of the scaling function and the values of the e
ponentsay can be used to distinguish between universality
classes. Moreover, the relation between these scaling fun
tions can be used as a further tool. For exampléy(ft) and

fy(u) coincide for one model and are different in another
model, it indicates that these two models do not belong to the

same universality class. The dependencétpf on the sys- 250 ' ' '
tem sizelL is given by o—e BTW
T 240 | =——=a Manna four state ]
(t)x~LPx, 9 % +—a Zhang
g 230 :
IV. SIMULATIONS AND RESULTS g I\I\I\{

Having defined the three models and the measures use% 2.20
for their characterization, we now describe the computer §
simulations. We have used open boundary conditions ancg 210 | |
system sizes up to 532with 1¢° to 1¢° grains dropped, in = © I\i\‘\i
two dimensions(2D). For each run we ascertained, before
collecting data, that the dynamics has reached the critica 2.00 L . .
state by applying Dhar’s burning algoritHi], or by starting 0.000 0.005 0.010 0.015 0.020
with a configuration belonging to the critical state. For each L
model we have calculated all the measures of classification rig 2. The exponent, of the avalanche size distribution as a
mentioned in Sec. IIl. function of the inverse system size (}/in the BTW, Manna four-

The exponentr that describes the avalanche size distri-state, and zhang models. The lines are guides to the eye. Although
bution was measured for the BTW, Manna four-state, angk is hard to reliably extrapolate from these results th-+/0, this

Zhang modelgFig. 1) finding good agreement with previous graph strongly indicates that the curves converge to three different
results[32,36. The exponent for the three models, as a values.
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FIG. 3. Geometric critical exponents for the BTW, Manna four-
state, and Zhang model&) E[s|a] (average avalanche size for
given avalanche argas a is presented, yielding.,. (b) E[s|t] is
given vst (avalanche timg yielding y,;. (¢) E[a|t] is given vst,
yielding v,,. System size is 5F2with 10’ grains dropped. Data
were binned with uniform bin sizes on the logarithmic scale.

to 1024, showed that these variableg,,, ys;, andy,;, are
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FIG. 4. The conditional expectation vall#s|a] vs a, which
yields vys, for the Zhang model for four system sizes betweer?128
and 1024. A bend is observed below whichs, is similar to the
corresponding exponent for the BTW model. Above this beggd
=1.60+0.05. This value is clearly different from thg,,=1.05
+0.01 of the BTW model and the,=1.240+-0.005 for the
Manna four-state model.

geometric exponents are clearly different from the values
recorded for the BTW model and for the Manna four-state
model. This puts in question the previous assignment of the
Zhang model to the universality class of the BTW model

[33-36.

To further characterize the avalanche structure, we exam-
ined the functionf(i), which provides the number of top-
pling events at sité during the avalanchérig. 5). For the
BTW model, we observe a shell structure in which all sites
that relaxed at leash+1 times form a connected cluster
with no holes, which is contained in the cluster of sites that
relaxed at leash times[7,37]. The Manna four-state model
exhibits a random avalanche structure with many peaks and
holes [32]. In between we find the Zhang model, which
shows an avalanche structure that is mostly shelled, but is
different from the BTW picture by having several peaks and
holes, but not as many as in the Manna four-state model.

To obtain a more quantitative characterization of the ter-
race structure we chose typical large avalanches for each of
the three models and plotted the terrace nunmbas a func-
tion of its area(Fig. 6). For the Manna model this function
exhibits higher and sharper peak compared to the two other
models. We have also measured, for the three models, the
distribution exponents,(n) for terraces no. 2, 3, 4, and 5
(Table ). The results show quantitative differences in the
avalanche structures, between the three models. In all cases
7a(N) decreases as is increased. The differences are sig-
nificant with the lowestr,(n) for Zhang, intermediate for
BTW, and highest for Manna models.

To obtain a more complete characterization of critical be-
havior in sandpile models we also examine the time evolu-

not scale invariant(Fig. 3). Although for small avalanches tion of the energy, avalanche size, and area during the ava-
the scaling behavior for the Zhang model resembles the didanche, averaged over a large number of avalanches.
tribution of the same variables in the BTW model, for large Combining results for system sizes=128, 256, and 512 we
avalanches we find hendand a sudden change in slope. draw the scaling function$ (w), fg(w), and f5(u) that
This bend is insensitive to the system size for all the systendescribe the averaged time evolution of the energy, number
sizes that were checke@Fig. 4). For large avalanches, the of active sites, and area growth rate during the avalanche.
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(c)

FIG. 5. Typical large avalanche structure for the BTW mo@g| Manna four-state modéb), and the Zhang mod€t). Gray scales
indicate the number of toppling eventéi) that occurred at each site during the avalanche. White represents zero relaxations, and black
represents the maximal number of relaxatifh in (a), 16 in (b), and 17 in(c)]. System size is 128 Note the shell structure in the BTW
avalanche[4] vs the irregular structure of the avalanche in the Manna four-state model, and the intermediate structure of the Zhang
avalanche. These qualitative geometrical differences translate into quantitative differences in exponent values.

The scaling functions for the BTW, Manna, and Zhang mod-age times are found to depend on the system size according
els are shown in Figs. 7, 8 and 9, respectively. For the BTWo (t)x~L?x, where Xe{U,S,A}. For the BTW model,

and Manna models we find excellent data collapse indicatingg,=1.51, Bs=1.43, andB,=1.31; for the Manna model,
scaling behavior. No such scaling is found for the Zhangg,=1.52, Bs=1.53, andB,=1.48; for the Zhang model
model, indicating that it lacks some of the features of a crit-one can approximate these exponents by values
cal system, which are found in the BTW and Manna modelsg,=1.5, Bs=1.46, and8,=1.36 but there is a significant
For the BTW modelFig. 7) we observe that all three scaling deviation from a straight line in the log-log plots @fx vs
functions fy(u), fg(u), andfa(x) are identical, so the L.

system is basically described by a single scaling function.

For the Manna model, we find thét(«) and fg(u) coin-

cide, whilef 5(w) is different. For the Zhang model, we find V. SUMMARY AND CONCLUSIONS

that there is no data collapse and therefore no scaling func- We have studied universality in isotropic, Abelian, and
tion. Interestingly, for each system size the functibpéw) non-Abelian sandpile models using a combination of exten-
andfg(u) are identical, whilef 5(w) is different. The aver- sive numerical simulations and an extended set of measures
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FIG. 6. The activity profile of a typical large avalanche in the
BTW, Manna four-state and Zhang model. The terrace number is
plotted as a function of its area. The picture is reflected around the
y axis. The system size is 128The BTW and Zhang models ex-
hibit moderate slopes, while in the Manna four-state model the
slope becomes extremely steep at high terrace numbers.

to characterize these models. In particular, we focused on the
BTW model(which is Abelian, deterministic, and isotrojic

the Manna mode{non-Abelian, stochastic, and isotropic on
average and the Zhang modéhon-Abelian, deterministic,

and isotropi¢. For each model we have calculated the critical
exponents that characterize an avalanche as a whole. These
include the distribution exponents, which characterize the
distribution of quantities such as avalanche size, area, and
lifetime, and the geometric exponengsg,, which relate the I

scaling properties of different quantities. The geometric ex- 0.0 —
ponentsy,, are particularly useful for classification due to 0.0 1.0 20 3.0

their weak dependence on the system size. Comparing these

exponents we find clear indications that the BTW and Manna t/<t>

m.odels bglong .to diffgrent universality classes, in agreement FIG. 7. The scaling functions for the BTW model for=128,

with previous _Slmulat|0n$32]. As for the Zhang _model, the 256, and 512(a) f(u), which describes the time dependence of
geometrlq critical e>_<ponents are not well defined. For ally,, energy during the avalanché) fo(u), which describes the
system sizes examined, the functioBBy|x] vs x, where  (ime dependence of the number of active sites; @hd, (1) which
x,ye{s,a,t}, from which the exponentsy, are obtained, describes the time dependence of the avalanche area growth rate.
exhibit domains with different slopes for small and largewe observe that all three scaling functions coincide, indicating a
avalanches. The small avalanche behavior is similar to theommon scaling function fod, S, andA. The exponents are found
BTW results, while the large avalanche behavior is differento be «;=0.24, 5=0.39, anda,=0.26 and the prefactork,

from both the BTW and Manna models. =2.34,Kg=0.3, andK ,=0.55.

The avalanche structures of the three models are found to
be significantly different. The BTW avalanche structure is
the most regular, the Manna structure is the most irregular,
nd the Zhang avalanche structure is intermediate.

We have also examined measures of the dynamics during
he avalanche. We found scaling functions for the time evo-
lutions of the energyf,(u), number of active site$g(u),
and the rate of area growthy(w) in the BTW and Manna

TABLE |. The distribution exponent,(n) for the areas of the
terraces non=2,3,4,5, in a 2D sandpile of size P&or all three
models, 7,(n) tends to decrease as the terrace omléncreases.
The differences between the models are significant, with the Iowesffl
exponents for Zhang, intermediate for BTW, and highest for thet
Manna model.

Exponent model models. For the BTW model, all three scaling functions co-
BTW Manna four-state Zhang incide, while for the Manna model only the first two coin-
cide. This is a qualitative difference that further strengthens
7a(2) 2.05* 0.03 2.16x 0.03 1.98+ 0.03 our conclusion that the two models belong to different uni-
7,(3) 2.00= 0.04 2.11+ 0.04 1.85+ 0.04 versality classes. For the Zhang model these functions do not
7.(4) 1.95+ 0.05 2.09+ 0.05 1.77+ 0.05 exhibit scaling behavior. This is a further indication that the
72(5) 1.91+ 0.05 2.00= 0.05 1.74=+ 0.05 Zhang model lacks some essential features of critical behav-

ior, which appear in the BTW and Manna models, and thus
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FIG. 8. The scaling functions for the Manna four-state model for ~ FIG. 9. The functionga) fy(u), () fs(x), and(c) fa(u) for
L=128, 256, and 512(a) f (u), (b) fs(x), and(c) fa(u). We the Zhang model fob =128, 256, and 512. We observe that func-
observe that the scaling functiofig(x) andfs(u) coincide while tions obtained from different system sizes do not coincide, indicat-
fa(u) has a completely different form. The exponents are found tdng that these are not scaling functions. This indicates that the
be ay=0.24, @s=0.3, and a,=—0.11 and the prefactor& Zhang model lacks some of the characteristic features of a critical
=1.76,Ks=0.221, andK ,=0.93. state found in the BTW and Manna models. Interestingly, for each

system size ;(n) andfg(u) still coincide, whilefa(w) is differ-
belongs to a different universality class. In fact, the only®nt. The exponents are found to bg=0.3, as=0.32, andap=
unambiguous scaling features of the Zhang model are giveny 0-2 @nd the prefactors, =0.55,Ks=0.76, andK o= 3.55.
by the distribution exponents,. We thus conclude that the
BTW, Manna, and Zhang models belong to three universalthat is not substantiated theoretically. Recently Corral and
ity classes. Diaz-Guilera derived nonlinear partial differential equations

Our results disagree with the conclusions of a number obased on the microscopic evolution rules of the BTW and
recent studies. Theck studied the scaling behavior in the Zhang model$35]. Using a dynamic RG approach they ana-
BTW and Zhang models using extensive numerical simulalyzed these equations and concluded that the two models
tions [36]. Relying only on the distribution exponents, he belong to the same universality class. Vespignani, Zapperi,
concluded that the BTW and Zhang models belong to theéind Pietronero used a real space RG approach and concluded
same universality class. As we demonstrated above, the dithat the BTW and Manna models belong to the same univer-
tribution exponents provide very limited characterization ofsality class[30,31]. The failure of these approaches to dis-
the scaling behavior. Therefore, these exponents alone ati@guish between the universality classes indicates that some
not enough to support a conclusion that two models belongfey ingredients of the dynamics are not taken into account.
to the same universality class. Moreover, the distribution ex- The results presented here provide a further indication for
ponents are strongly dependent on the system size. Orike rich and diverse behavior of sandpile models. On the one
should be careful in interpreting the results of the finite sizehand, the fact that so many different models exhibit scaling
analysis done in36], based on an assumed size dependencbehavior shows that the self-organized critical state is ge-
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neric for a broad class of slowly driven systems. On the othetheory of SOC. Furthermore, applying the measures intro-
hand, the critical exponents and scaling functions are founduced here in the analysis of experimental results may
to be dependent on details of the model dynamics. We specsharpen the experimental evidance for SOC in empirical sys-
late that these details may be related to symmetries such #sms.

the Abelian symmetry, as well as properties such as the de-

terministic vs stochastlc nature of the f'ivalanche _dynam|cs. ACKNOWLEDGMENTS
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